A Faster Algorithm for Fully Dynamic Betweenness Centrality

نویسندگان

  • Matteo Pontecorvi
  • Vijaya Ramachandran
چکیده

We present a new fully dynamic algorithm for maintaining betweenness centrality (BC) of vertices in a directed graph G = (V,E) with positive edge weights. BC is a widely used parameter in the analysis of large complex networks. We achieve an amortized O(ν · log n) time per update, where n = |V | and ν bounds the number of distinct edges that lie on shortest paths through any single vertex. This result improves on the amortized bound for fully dynamic BC in [21,22] by a logarithmic factor. Our algorithm uses new data structures and techniques that are extensions of the method in the fully dynamic algorithm in Thorup [28] for APSP in graphs with unique shortest paths. For graphs with ν = O(n), our algorithm matches the fully dynamic APSP bound in Thorup [28], which holds for graphs with ν = n− 1, since it assumes unique shortest paths.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Faster Betweenness Centrality Updates in Evolving Networks

Finding central nodes is a fundamental problem in network analysis. Betweenness centrality is a well-known measure which quantifies the importance of a node based on the fraction of shortest paths going though it. Due to the dynamic nature of many today’s networks, algorithms that quickly update centrality scores have become a necessity. For betweenness, several dynamic algorithms have been pro...

متن کامل

Approximating Betweenness Centrality in Large Evolving Networks

Betweenness centrality ranks the importance of nodes by their participation in all shortest paths of the network. Therefore computing exact betweenness values is impractical in large networks. For static networks, approximation based on randomly sampled paths has been shown to be significantly faster in practice. However, for dynamic networks, no approximation algorithm for betweenness centrali...

متن کامل

Approximating Betweenness Centrality in Fully Dynamic Networks

Betweenness is a well-known centrality measure that ranks the nodes of a network according to their participation in shortest paths. Because exact computations are prohibitive in large networks, several approximation algorithms have been proposed. Besides that, recent years have seen the publication of dynamic algorithms for efficient recomputation of betweenness in networks that change over ti...

متن کامل

Efficient algorithms for updating betweenness centrality in fully dynamic graphs

Betweenness centrality of a vertex (edge) in a graph is a measure for the relative participation of the vertex (edge) in the shortest paths in the graph. Betweenness centrality is widely used in various areas such as biology, transportation, and social networks. In this paper, we study the update problem of betweenness centrality in fully dynamic graphs. The proposed update algorithm substantia...

متن کامل

Fully-Dynamic Approximation of Betweenness Centrality

Betweenness is a well-known centrality measure that ranks the nodes of a network according to their participation in shortest paths. Since an exact computation is prohibitive in large networks, several approximation algorithms have been proposed. Besides that, recent years have seen the publication of dynamic algorithms for efficient recomputation of betweenness in evolving networks. In previou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1506.05783  شماره 

صفحات  -

تاریخ انتشار 2015